作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过分析全变分(TV)去噪模型的优缺点,提出了一种新的改进算法.该算法根据最大后验概率(MAP)和马尔可夫随机场(MRF)的理论,推导出一个广义变分的图像去噪模型,并对平衡正则化项和数据保真项的Lagrange乘子λ进行了自适应改进,最后采用了一种鲁棒性好和边缘保持能力强的势函数,结合梯度加权最速下降法和半点格式的数值迭代算法对自适应的广义变分去噪模型寻优求解.实验结果表明,新模型能很好地应用于图像去噪,与现有的算法相比,在峰值信噪比有所提高的同时,图像的主观视觉效果也更好.
推荐文章
自适应全变分图像去噪模型及其快速求解
图像去噪
全变分模型
Bregman迭代正则化
分裂Bregman迭代算法
基于Ridgelet变换的自适应软硬折衷图像去噪算法
Wavelet变换
Radon变换
Ridgelet变换
图像去噪
基于小波阈值和全变分模型的图像去噪
图像去噪
自适应阈值
小波变换
全变分模型
基于自适应耦合PDE模型的车牌图像去噪研究
偏微分方程(PDE)
车牌识别
各向异性扩散
自适应耦合
振动滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于广义变分模型的自适应图像去噪算法
来源期刊 计算机应用 学科 工学
关键词 全变分模型 最大后验概率 马尔可夫随机场 位势函数 广义高斯分布
年,卷(期) 2009,(11) 所属期刊栏目 图形图像处理
研究方向 页码范围 3033-3036
页数 4页 分类号 TP391.41
字数 3994字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王益艳 四川文理学院物理与工程技术系 33 146 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (9)
参考文献  (13)
节点文献
引证文献  (7)
同被引文献  (4)
二级引证文献  (8)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(3)
  • 参考文献(1)
  • 二级参考文献(2)
1990(3)
  • 参考文献(1)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(5)
  • 参考文献(3)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(5)
  • 参考文献(2)
  • 二级参考文献(3)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
全变分模型
最大后验概率
马尔可夫随机场
位势函数
广义高斯分布
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
总被引数(次)
209512
论文1v1指导