基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对粒子群算法收敛速度不佳和易陷入局部最优的问题,提出了一种遗传量子粒子群优化(GQPSO)的属性约简算法,GQPSO算法利用量子系统较大的搜索范围,并借鉴遗传算法的选择、变异等操作,从而避免了算法过早收敛至局部最优,且能得到可观的收敛速度.实验结果表明,GQPSO算法具有更快的收敛速度和全局搜索能力,提高了属性约简的效率.
推荐文章
一种量子粒子群算法的改进方法
粒子群优化算法
量子粒子群优化算法
公共历史
并行搜索
局部最优
一种基于量子粒子群的过程神经元网络学习算法
过程神经元网络
量子粒子群
网络训练
算法设计
一种基于量子遗传算法与粗糙集理论的属性约简法
粗糙集
属性约简
遗传算法
量子遗传算法
混合自适应量子粒子群优化算法
量子粒子群优化算法
收缩—扩张系数
差分策略
Levy飞行策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种遗传量子粒子群的属性约简算法
来源期刊 湖南工业大学学报 学科 工学
关键词 属性约简 遗传算法 量子 粒子群 收敛
年,卷(期) 2010,(6) 所属期刊栏目
研究方向 页码范围 49-52
页数 分类号 TP391
字数 3186字 语种 中文
DOI 10.3969/j.issn.1673-9833.2010.06.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王加阳 中南大学信息科学与工程学院 140 1000 15.0 24.0
2 周丽娟 湖南工业大学科技学院 22 126 4.0 11.0
3 谢颖 中南大学信息科学与工程学院 18 240 8.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (19)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (6)
二级引证文献  (3)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(9)
  • 参考文献(2)
  • 二级参考文献(7)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
属性约简
遗传算法
量子
粒子群
收敛
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南工业大学学报
双月刊
1673-9833
43-1468/T
大16开
湖南省株洲市天元区泰山路88号
1987
chi
出版文献量(篇)
3955
总下载数(次)
6
总被引数(次)
15502
论文1v1指导