针对目标属性识别的特点,建立了基于粗糙集(Rough Sets, RS)的数据分组处理(Group Method of Data Handling, GMDH)神经网络分类模型.该模型较好地解决了采用高维数据集训练神经网络效率低,神经网络结构规模较大的问题.同时为了提高高维数据集合的属性约简效率,改进了集合近似质量属性约简算法.最后,通过与BP(Back-Propagation, BP)神经网络分类能力的仿真对比,结果表明,基于粗糙集的数据分组处理神经网络分类模型分类能力优于BP神经网络模型,满足现代防空作战对目标属性识别的需求,基于快速求核和集合近似质量的属性约简算法快速有效.