基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
土壤含盐量的预测对合理配置水资源.防治土壤次生盐碱化等具有重要的指导意叉.在阐述BP人工神经网络原理的基础上,针对影响土壤含盐量的主要因素,建立了多因子土壤含盐量的3层BP网络模型,以土壤含水率、地下水矿化度、地下水pH值、地下水埋深、相对湿度、降雨量、蒸发量作为模型输入参数,土壤含盐量作为模型输出,对土壤含盐量进行了预测.结果表明,BP神经网络模型预测土壤含盐量的最大误差为8.78%,平均误差为5.99%,模型具有较高的预测精度.
推荐文章
土壤含盐量BP神经网络反演模型
土壤含盐量
Hyperion数据
反演
BP神经网络模型
基于神经网络方法的土壤流失量预测研究
生产建设项目
土壤流失量预测
神经网络方法
人工神经网络在边坡滑移预测中的应用
滑坡预测
神经网络
非线性模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 人工神经网络在土壤含盐量预测中的应用
来源期刊 中国农村水利水电 学科 农学
关键词 土壤含盐量 次生盐碱化 BP模型
年,卷(期) 2010,(10) 所属期刊栏目
研究方向 页码范围 33-35
页数 分类号 TP183|S156.4+6
字数 3016字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宰松梅 10 183 8.0 10.0
2 郭冬冬 5 39 3.0 5.0
3 温季 13 82 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (225)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (19)
二级引证文献  (26)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(4)
  • 引证文献(1)
  • 二级引证文献(3)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(6)
  • 引证文献(3)
  • 二级引证文献(3)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(5)
  • 引证文献(1)
  • 二级引证文献(4)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
土壤含盐量
次生盐碱化
BP模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国农村水利水电
月刊
1007-2284
42-1419/TV
大16开
武汉大学二区
38-49
1959
chi
出版文献量(篇)
10420
总下载数(次)
11
总被引数(次)
59046
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导