基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在实际环境中,训练环境和测试环境的失配会导致语音识别系统的性能急剧恶化.模型自适应算法是减小环境失配影响的有效方法之一,它通过少量自适应数据将模型参数变换到识别环境.最大似然线性回归是一种常用的基于变换的模型自适应算法,本文针对最大似然线性回归算法在数据较少时模型参数估计不准确的缺点,提出了基于最大似然子带线性回归的模型自适应算法.该算法将Mel滤波器组的全部通道划分为若干个子带,假设每个子带内多个通道的模型均值分量共享一个线性环境变换关系,以增加可用的数据.实验表明,本文算法可以较好地克服数据稀疏问题,只需要很少的数据即可取得较好的自适应效果,尤其适合于少量数据时的快速模型自适应.
推荐文章
噪声鲁棒语音识别研究综述
鲁棒语音识别
语音增强
特征补偿
模型补偿
基于最大均值似然判决规则的说话人辨认研究
最大似然判决规则
最大均值似然判决规则
说话人辨认
基于子带保留似然比的鲁棒语音激活检测算法
语音处理
语音激活检测
统计模型
似然比
低信噪比
引入蝙蝠算法的最大似然DOA估计
DOA估计
最大似然估计
蝙蝠算法
仿生智能算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最大似然子带线性回归的鲁棒语音识别
来源期刊 信号处理 学科 工学
关键词 语音识别 模型自适应 最大似然子带线性回归 隐马尔可夫模型
年,卷(期) 2010,(1) 所属期刊栏目 算法与研究
研究方向 页码范围 74-79
页数 6页 分类号 TN912.34
字数 6436字 语种 中文
DOI 10.3969/j.issn.1003-0530.2010.01.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴镇扬 东南大学信息科学与工程学院 167 1889 20.0 37.0
2 吕勇 东南大学信息科学与工程学院 6 37 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (3)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语音识别
模型自适应
最大似然子带线性回归
隐马尔可夫模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
论文1v1指导