作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
实体间语义关系抽取是信息抽取中的重要环节,其目的是从文本中找出实体对之间的语义关系并对它们进行分类.本文主要通过发掘有效的词汇特征、实体特征、基本短语块特征等基本语言学特征,采用基于支持向量机的学习方法,来提高中文实体间语义关系抽取的性能,使得关系抽取的准确率和召回率得到提高,最终提高关系探测、大类抽取和子类抽取的F值.
推荐文章
实体词语义信息对中文实体关系抽取的作用研究
《同义词词林》
知网
树核函数
关系抽取
融合语句-实体特征与Bert的中文实体关系抽取模型
自然语言处理
关系抽取
深度学习
BERT
Transformer
中文语义组块自动抽取方法
语义表述
深度信念网络
深度学习
中文语义组块
基于特征选择的实体关系抽取
关系抽取
特征选择
信息增益
期望交叉熵
x2统计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 语言学特征在中文实体间语义关系抽取中的应用
来源期刊 福建电脑 学科 工学
关键词 信息抽取 语义关系抽取 支持向量机 语言学特征
年,卷(期) 2010,(6) 所属期刊栏目
研究方向 页码范围 78-79
页数 分类号 TP3
字数 3116字 语种 中文
DOI 10.3969/j.issn.1673-2782.2010.06.056
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 季元叶 苏州大学计算机科学与技术学院 6 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (219)
参考文献  (3)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
信息抽取
语义关系抽取
支持向量机
语言学特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福建电脑
月刊
1673-2782
35-1115/TP
大16开
福州市华林邮局29号信箱
1985
chi
出版文献量(篇)
21147
总下载数(次)
86
总被引数(次)
44699
论文1v1指导