基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于遗传BP人工神经网络的COSM图像复原算法,利用BP神经网络的学习记忆和泛化能力,通过用一组COSM样本图像对网络进行训练,建立含有离焦模糊的模糊三维图像与清晰三维图像之间的非线性映射关系,然后利用训练好的BP神经网络对待复原的COSM图像进行复原处理,从而实现COSM图像复原.复原的三维图像无论在主观视觉还是定量分析上都取得了很好的效果.与传统的图像复原算法不同,该算法免去了解卷积等复杂的运算,不存在病态问题,可广泛应用于模糊图像的复原中并且效果较好.
推荐文章
基于BP神经网络的雾天图像复原算法
雾天图像
图像复原
神经网络
粒子群优化算法
基于BP神经网络的雾天图像复原算法
雾天图像
图像复原
神经网络
粒子群优化算法
基于Fourier神经网络的图像复原算法
图像复原
傅里叶正交基函数
傅里叶神经网络
衍生算法
基于调和模型的快速神经网络图像复原算法
图像复原
神经网络
调和模型
去模糊
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传BP神经网络的COSM图像复原算法
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 图像复原 神经网络 COSM 非线性映射
年,卷(期) 2011,(4) 所属期刊栏目 电子信息科学
研究方向 页码范围 833-838
页数 分类号 TP391
字数 3936字 语种 中文
DOI 10.3969/j.issn.0490-6756.2011.04.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何小海 四川大学电子信息学院图象信息研究所 395 2334 21.0 30.0
2 陶青川 四川大学电子信息学院图象信息研究所 79 443 10.0 17.0
3 张建锋 四川大学电子信息学院图象信息研究所 2 10 2.0 2.0
4 贺可鑫 四川大学电子信息学院图象信息研究所 4 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (30)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (20)
二级引证文献  (4)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(11)
  • 参考文献(0)
  • 二级参考文献(11)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(8)
  • 参考文献(0)
  • 二级参考文献(8)
1996(7)
  • 参考文献(0)
  • 二级参考文献(7)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(8)
  • 参考文献(0)
  • 二级参考文献(8)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图像复原
神经网络
COSM
非线性映射
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导