基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
推荐系统是电子商务系统中最重要的技术之一.协同过滤技术是当今应用最普遍的个性化推荐算法.针对用户评分数据的极端稀疏性和算法的可扩展性,首先利用云模型计算项目间相似度来预测用户对未评分项目的评分,来增加用户评分数据,再根据项目分类信息将用户一项目评分矩阵转换为用户一类别矩阵,降低了评分矩阵的维度,最后利用云模型计算用户间相似度,得到目标用户的最近邻居.实验结果表明,该方法具有较小的MAE,提高了推荐系统的推荐质量.
推荐文章
一种基于社区发现的微博个性化推荐算法
微博推荐算法
用户模型
社区发现
效用函数
一种改进的基于协同过滤的个性化推荐算法
普适计算
同过滤
性化推荐
协同过滤的一种个性化推荐算法研究
协同过滤
稀疏矩阵
相似度
个性化推荐
一种基于稀疏矩阵划分的个性化推荐算法
个性化推荐
稀疏矩阵划分
协同过滤
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种结合基于项目和用户的个性化推荐算法
来源期刊 小型微型计算机系统 学科 工学
关键词 项目类别 协同过滤 用户相似性 云模型
年,卷(期) 2011,(4) 所属期刊栏目 计算机软件与数据库技术
研究方向 页码范围 611-613
页数 分类号 TP311
字数 4307字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐德智 中南大学信息科学与工程学院 138 1248 16.0 30.0
2 黎明 四川师范大学计算机科学学院 23 109 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (176)
参考文献  (4)
节点文献
引证文献  (26)
同被引文献  (33)
二级引证文献  (35)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(11)
  • 参考文献(0)
  • 二级参考文献(11)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2014(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(11)
  • 引证文献(9)
  • 二级引证文献(2)
2017(12)
  • 引证文献(4)
  • 二级引证文献(8)
2018(16)
  • 引证文献(3)
  • 二级引证文献(13)
2019(11)
  • 引证文献(0)
  • 二级引证文献(11)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
项目类别
协同过滤
用户相似性
云模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导