基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The instrumental temperature records are affected by both external climate forcings—in particular, the increase of long-lived greenhouse gas emissions—and natural, internal variability. Estimates of the value of equilibrium climate sensitivity—the change in global-mean equilibrium near-surface temperature due to a doubling of the pre-industrial CO2 concentration—and other climate parameters using these observational records are affected by the presence of the internal variability. A different realization of the natural variability will result in different estimates of the values of these climate parameters. In this study we apply Bayesian estimation to simulated temperature and ocean heat-uptake records generated by our Climate Research Group’s Simple Climate Model for known values of equilibrium climate sensitivity, T2x direct sulfate aerosol forcing in reference year 2000, FASA, and oceanic heat diffusivity, ΔT2x. We choose the simulated records for one choice of values of the climate parameters to serve as the synthetic observations. To each of the simulated temperature records we add a number of draws of the quasi-periodic oscillations and stochastic noise, determined from the observed temperature record. For cases considering only values of ΔT2x and/or κ, the Bayesian estimation converges to the value(s) of ΔT2x and/or κ used to generate the synthetic observations. However, for cases studying FASA, the Bayesian analysis does not converge to the “true” value used to generate the synthetic observations. We show that this is a problem of low signal-to-noise ratio: by substituting an artificial, continuously increasing sulfate record, we greatly improve the value obtained through Bayesian estimation. Our results indicate Bayesian learning techniques will be useful tools in constraining the values of ΔT2x and κ but not FASA In our Group’s future work we will extend the methods used here to the observed, instrumental records of global-mean temperature increase and ocean heat uptake.
推荐文章
The influence of climate and topography on chemical weathering of granitic regoliths in the monsoon
Granitic regolith
Chemical weathering
Supply-limited weathering
Kinetic-limited weathering
智能信息处理的Bayesian方法研究进展
Bayesian统计学
混合智能系统
混合体模型
神经网络
计算机视觉
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Bayesian Learning of Climate Sensitivity I: Synthetic Observations
来源期刊 大气和气候科学(英文) 学科 医学
关键词 CLIMATE UNCERTAINTY BAYESIAN Estimation Internal VARIABILITY
年,卷(期) dqhqhkxyw_2012,(4) 所属期刊栏目
研究方向 页码范围 464-473
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CLIMATE
UNCERTAINTY
BAYESIAN
Estimation
Internal
VARIABILITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大气和气候科学(英文)
季刊
2160-0414
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
426
总下载数(次)
0
论文1v1指导