基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
阐述了BP神经网络模型及原理,提出了基于BP神经网络的发动机故障诊断分析方法,在理论分析的基础上,对发动机故障的检测和分析进行了MATLAB仿真,仿真结果表明,利用BP神经网络对发动机故障进行检侧具有检测精度高、速度快的特点.
推荐文章
基于改进的BP神经网络的柴油发动机故障诊断
柴油发动机
高压共轨
BP神经网络
LM算法
电控系统
故障诊断
基于BP神经网络的电控发动机故障诊断
汽车发动机
电控系统
BP神经网络
故障诊断
基于改进的LVQ神经网络的发动机故障诊断
改进的LVQ神经网络
发动机
故障诊断
神经元
基于PNN神经网络的电控发动机故障诊断
PNN神经网络
发动机
电控系统
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的柴油发动机故障诊断
来源期刊 吉首大学学报:自然科学版 学科 工学
关键词 发动机 神经网络 故障诊断
年,卷(期) 2012,(4) 所属期刊栏目 物理与机电工程
研究方向 页码范围 69-71
页数 3页 分类号 TK421.8
字数 1995字 语种 中文
DOI 10.3969/j.issn.1007-2985.2012.04.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆秀令 湖南工学院电气与信息工程系 24 244 9.0 15.0
2 张松华 湖南工学院电气与信息工程系 28 252 9.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (8)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
发动机
神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉首大学学报(自然科学版)
双月刊
1007-2985
43-1253/N
大16开
湖南省吉首市
1980
chi
出版文献量(篇)
2943
总下载数(次)
1
总被引数(次)
10461
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导