基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
建立基于误差反传神经网络的船舶号灯智能识别模型,在众多的号灯识别参数中进行优化分析,确定了能见度、号灯亮度、背景亮度和眩光4个重要输入参数;利用这4个参数,基于误差反传神经网络对船舶号灯的可识别性进行建模和仿真,比较利用Levenberg-Marquart( L-M)、动量梯度下降、变学习率动量梯度下降和弹性反向传播等学习算法建立的误差反传神经网络模型,并确定L-M算法具有最优结果.通过号灯识别的仿真结果表明,识别结果与航海专家评估的结果一致.本模型实现了复杂光环境下船舶号灯可识别性的预报和影响因素分析,对保障船舶的夜航安全有着重要意义.
推荐文章
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于BP神经网络的ARM目标识别模型研究
BP神经网络
ARM
目标识别
Simlink
基于HMM与BP神经网络的物体识别算法
HMM模型
BP神经网络
人体识别
基于BP神经网络的交通标志识别
交通标志
BP神经网络
标志识别
物联网
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的船舶号灯识别模型与仿真
来源期刊 应用基础与工程科学学报 学科 工学
关键词 可识别性 BP神经网络 船舶号灯 仿真
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 455-463
页数 分类号 TP183
字数 4406字 语种 中文
DOI 10.3969/j.issn.1005-0930.2012.03.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李铁山 大连海事大学航海学院 53 818 17.0 27.0
2 尹建川 大连海事大学航海学院 49 247 8.0 14.0
3 朱金善 大连海事大学航海学院 32 138 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (37)
参考文献  (12)
节点文献
引证文献  (21)
同被引文献  (83)
二级引证文献  (42)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(5)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2014(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(12)
  • 引证文献(4)
  • 二级引证文献(8)
2016(9)
  • 引证文献(4)
  • 二级引证文献(5)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(11)
  • 引证文献(3)
  • 二级引证文献(8)
2019(13)
  • 引证文献(3)
  • 二级引证文献(10)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
可识别性
BP神经网络
船舶号灯
仿真
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用基础与工程科学学报
双月刊
1005-0930
11-3242/TB
16开
北京大学老地学楼110室
1993
chi
出版文献量(篇)
2121
总下载数(次)
3
总被引数(次)
21474
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导