基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了弥补Ababoost分类器分类精度不够、训练耗时的缺点,利用高斯过程分类器分类精度高、计算复杂度低的优势,提出一种改进的表情识别方法.该算法将高斯过程分类(GPC)和Adaboost的人脸表情识别算法相结合,在训练二分类Adaboost时利用高斯过程分类器训练弱分类器;把这些弱分类器组合成一个总分类器,将二分类Adaboost-GPC扩展为多类分类算法.采用Gabor提取面部表情特征,由于Gabor特征提取后存在维度变高、冗余大的问题,引入二维主成分分析(2DPCA)对Gabor特征进行选择.基于Cohn-Kanade和JAFFE数据库的实验结果表明,该算法在识别正确率和速度方面的表现均较好.
推荐文章
基于Adaboost与SOFMN的人脸识别
自组织特征映射
人脸识别
Adaboost算法
Kohonen算法
图像小波分析
基于差分纹理的人脸表情识别
面部表情
Delaunay 三角剖分
差分纹理特征
主动形状模型
基于多特征融合的人脸表情识别
表情识别
均值主元分析
线性判别
支持向量机
基于CBP-TOP特征的人脸表情识别
人脸表情识别
人脸检测
尺度归一化
CBP-TOP特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Adaboost-高斯过程分类的人脸表情识别
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 Adaboost 高斯过程 分类器 表情识别
年,卷(期) 2012,(1) 所属期刊栏目 自动化技术、计算机技术
研究方向 页码范围 79-83
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2012.01.13
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (51)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Adaboost
高斯过程
分类器
表情识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导