作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
BP神经网络是一种误差逆传播算法训练的多层前馈网络,具备网络学习能力强、输入/输出模式映射关系存贮量大、事先不需要描述输入/输出映射关系等诸多优点的数学方程。本文通过BP神经网络的介绍,利用不变矩特征提取方法设计一种有效的BP神经网络印刷体数字识别演示系统,对印刷体数字识别的深入研究具有一定的指导意义。
推荐文章
基于多特征的印刷体数字识别
特征提取
印刷体数字识别
模式识别
基于神经网络的数字识别的研究
神经网络
数字识别
BP网络
基于神经网络的印刷体数学公式抽取方法
光学字符识别
特征提取
数学公式抽取
决策树
BP神经网络
基于深度学习的印刷体文档字符识别的研究
印刷体字符识别
深度学习
图片数据集
Lenet-5Pro
字符增强
仿真分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的印刷体数字识别研究
来源期刊 科技广场 学科 工学
关键词 BP神经网络 印刷体数字 不变矩
年,卷(期) 2012,(3) 所属期刊栏目 研究与探讨
研究方向 页码范围 24-26
页数 3页 分类号 TP391
字数 1270字 语种 中文
DOI 10.3969/j.issn.1671-4792.2012.03.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张珍荣 江西理工大学机电工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (65)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (7)
二级引证文献  (9)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
BP神经网络
印刷体数字
不变矩
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技广场
月刊
1671-4792
36-1253/N
大16开
南昌市省府大院北二路53号
44-66
1988
chi
出版文献量(篇)
11613
总下载数(次)
26
总被引数(次)
31625
论文1v1指导