基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现场采集时间序列数据中的离群点显著影响时变非线性工业过程在线模型性能这一问题,提出鲁棒的递推最小二乘支持向量机软测量建模方法.在模型训练阶段,采用支持向量聚类(SVC)排除离群点,建立有效的数据区域.将SVC用于递推过程前向学习阶段,并引入更有效的增删节点准则,在快速递推的前提下提高了模型的推广能力.将该方法应用于工业高炉过程铁水的硅质量分数预测,通过试验连续预测566炉高炉铁水硅质量分数,命中率高达81%,预测均方根误差为0.054 7,表明了较其他方法有更好的鲁棒性与精度.
推荐文章
鲁棒递推偏最小二乘法
野点分析
递推偏最小二乘法
鲁棒主分量回归算法
交流异步电力测功机
一种鲁棒半监督建模方法及其在化工过程故障检测中的应用
故障检测
鲁棒模型
半监督
过程控制
过程系统
主元分析
基于主元提取的鲁棒极限学习机研究及其化工建模应用
极限学习机
神经网络
主元分析
过程建模
化工生产
过程控制
核Hebbian算法在加氢脱芳烃过程中的建模应用
加氢脱芳烃
产品质量建模
统计学习理论
Hebbian算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 鲁棒的递推核学习建模方法在高炉过程的应用
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 时间序列 离群点 支持向量聚类(SVC) 递推辨识 最小二乘支持向量机回归
年,卷(期) 2012,(4) 所属期刊栏目 自动化技术、电信技术
研究方向 页码范围 705-711
页数 7页 分类号 TP301.6|TQ02
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2012.04.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (30)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(5)
  • 参考文献(5)
  • 二级参考文献(0)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时间序列
离群点
支持向量聚类(SVC)
递推辨识
最小二乘支持向量机回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导