基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
蚁群聚类是一种有效的聚类方法,已在数据分析等领域获得广泛应用.MPI并行计算提供高效的数据处理方案,研究蚁群聚类算法的并行化是目前具有挑战性的研究课题.首先介绍了基于传统编程模型的解决TSP问题的蚁群优化算法,以及蚁群优化算法和K-means结合的聚类方法,描述了它们的基本原理和实现过程.然后,对基于传统编程模型的聚类算法进行MPI并行化改进,实现了基于MPI并行计算的蚁群聚类算法.最后,分别采用Iris、Wine、Zoo3个UCI数据集和Reuter-21578文本数据集进行多次测试,对基于传统编程模型的聚类算法和基于MPI并行计算的聚类算法进行性能和效率上的比较,得出基于MPI并行计算的聚类算法更优的结论.
推荐文章
基于扩散信息素的蚁群聚类算法及应用
蚁群算法
聚类分析
信息素扩散模型
客户分类
蚁群聚类算法在隐写分析中的应用
隐写分析
富模型
集成分类
蚁群算法
基于信息熵的蚁群聚类组合算法的研究
聚类
蚁群聚类
信息熵
K-均值
蚁群聚类算法在客户关系管理中的应用
蚁群算法
客户关系管理
聚类分析
蚁群聚类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群聚类算法的并行化设计与实现
来源期刊 控制工程 学科 工学
关键词 聚类 蚁群算法 MPI并行计算
年,卷(期) 2013,(3) 所属期刊栏目 过程控制技术及应用
研究方向 页码范围 411-414
页数 4页 分类号 TP273
字数 4454字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨燕 西南交通大学信息科学与技术学院 97 1192 16.0 32.0
2 王全根 西南交通大学信息科学与技术学院 3 11 1.0 3.0
3 黄波 西南交通大学信息科学与技术学院 3 20 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (50)
参考文献  (4)
节点文献
引证文献  (11)
同被引文献  (64)
二级引证文献  (36)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(4)
  • 引证文献(4)
  • 二级引证文献(0)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(13)
  • 引证文献(1)
  • 二级引证文献(12)
2019(12)
  • 引证文献(0)
  • 二级引证文献(12)
2020(8)
  • 引证文献(0)
  • 二级引证文献(8)
研究主题发展历程
节点文献
聚类
蚁群算法
MPI并行计算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制工程
月刊
1671-7848
21-1476/TP
大16开
沈阳东北大学310信箱
8-216
1994
chi
出版文献量(篇)
5468
总下载数(次)
9
论文1v1指导