基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目标跟踪过程中,可变目标表观的特征数据会发生“分布漂移”的问题,提出一种基于非参贝叶斯多模表观模型的目标跟踪方法.首先,以时间Dirichlet过程为先验分布,把先前估计的目标样本划分为不同的聚集,使得每个聚集表示一类表观,同时,每个表现类被建模为判别式分类器;然后,基于贝叶斯后验推断,权衡先前表观模型的分类误差和拆分聚集的代价,从数据中自主学习表现模型;最后,基于Noisy-OR模型,以贪心(Greedy)策略协同各表观分类器判别出目标.仿真结果表明该方法能较好的跟踪可变目标表观,改善了目标跟踪性能.
推荐文章
应用Dirichlet分布的概率假设密度多目标跟踪
多目标跟踪
概率假设密度
Dirichlet分布
状态提取
k-d树
期望极大化
基于改进高斯混合模型的运动目标检测与跟踪
运动目标检测
全局匹配
改进高斯混合模型
分块处理
基于在线学习的目标跟踪方法研究
局部特征
在线Boosting
协同训练
目标跟踪
基于改进高斯混合模型的体育视频运动目标检测与跟踪
高斯混合模型
体育视频
运动目标
目标检测
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于时间Dirichlet过程混合模型的在线目标跟踪
来源期刊 系统仿真学报 学科 工学
关键词 目标跟踪 在线多示例Boosting算法 时间Dirichlet过程混合模型 非参贝叶斯模型
年,卷(期) 2013,(6) 所属期刊栏目 仿真建模与仿真算法及数值仿真
研究方向 页码范围 1155-1160
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 熊忠阳 重庆大学计算机学院 135 2447 25.0 44.0
2 张玉芳 重庆大学计算机学院 125 2737 26.0 48.0
3 孙建中 重庆大学计算机学院 6 13 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (45)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (3)
二级引证文献  (4)
1973(3)
  • 参考文献(1)
  • 二级参考文献(2)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
目标跟踪
在线多示例Boosting算法
时间Dirichlet过程混合模型
非参贝叶斯模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统仿真学报
月刊
1004-731X
11-3092/V
大16开
北京市海淀区永定路50号院
82-9
1989
chi
出版文献量(篇)
14694
总下载数(次)
35
论文1v1指导