基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
电力变压器油中溶解气体的色谱分析是变压器故障诊断的重要方法,通过该方法可以间接了解变压器的运行状态和内部潜在故障.人工神经网络已经成功地应用于电力变压器故障诊断,但学习样本数多和输入输出关系复杂性减慢了网络的收敛速度.为解决此问题,将用遗传算法改进的小波神经网络应用于电力变压器故障诊断,克服小波算法易于陷入局部极小、收敛速度慢等缺点.
推荐文章
基于小波神经网络的变压器PD故障诊断模型的研究
小波
神经网络
故障诊断
模式识别
基于SOFM神经网络的变压器故障诊断研究
SOFM神经网络
故障诊断
改进的罗杰斯三比值法
变压器
泛化能力
基于BP神经网络的电力变压器故障诊断
电力变压器
神经网络
三比值法
故障
诊断
基于模糊神经网络的电力变压器故障诊断研究
模糊神经网络
遗传算法
电力变压器
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传小波神经网络的变压器故障诊断
来源期刊 吉首大学学报(自然科学版) 学科 工学
关键词 小波神经网络 遗传算法 变压器故障诊断
年,卷(期) 2013,(1) 所属期刊栏目 物理与电气工程
研究方向 页码范围 51-55,76
页数 6页 分类号 TM407|TP18
字数 2791字 语种 中文
DOI 10.3969/j.issn.1007-2985.2013.01.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王雪丹 29 97 5.0 8.0
2 万丹 4 7 1.0 2.0
3 马桂雨 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (75)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (25)
二级引证文献  (4)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(4)
  • 参考文献(3)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波神经网络
遗传算法
变压器故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉首大学学报(自然科学版)
双月刊
1007-2985
43-1253/N
大16开
湖南省吉首市
1980
chi
出版文献量(篇)
2943
总下载数(次)
1
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导