基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在现有支持向量机多分类方法基础上,提出了一种改进的有向无环图支持向量机(DAGSVM)手势识别方法.分析了传统有向无环图支持向量机分类器生成顺序随机化的不足,引入类间距离和类的标准差作为生成分类器的测度.利用Kinect获取场景深度信息得到手势图像,提取手势特征并训练SVM分类器,并采用改进后的方法得到DAGSVM分类器.实验证明:与其他支持向量机多分类器相比,改进后的DAGSVM分类器能够达到更高的识别率,将这个手势识别方法用于智能轮椅的控制上,取得了良好的效果.
推荐文章
基于RGB-D信息的动态手势识别方法
动态手势识别
彩色—深度图像
K-均值聚类算法
动态时间规整
快速动态时间规整
卡尔曼滤波
人车交互技术中的手势检测及识别方法
人机交互
手势识别
自生成神经网络
粒子群算法
特征提取
基于DTW的交警指挥手势识别方法
Kinect传感器
交警手势
动态时间规整算法
高内聚性
低耦合性
基于无监督特征学习的手势识别方法
无监督的特征学习
稀疏自编码神经网络
边缘特征
调优
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的DAGSVM手势识别方法
来源期刊 华中科技大学学报(自然科学版) 学科 工学
关键词 智能轮椅 手势识别 人机交互 有向无环图 支持向量机 深度信息
年,卷(期) 2013,(5) 所属期刊栏目 计算机技术
研究方向 页码范围 86-89
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗元 重庆邮电大学国家信息无障碍工程研发中心 192 1681 17.0 31.0
2 张毅 重庆邮电大学国家信息无障碍工程研发中心 281 2390 21.0 36.0
3 蔡军 重庆邮电大学国家信息无障碍工程研发中心 26 129 7.0 9.0
4 李晓娟 重庆邮电大学智能系统及机器人研究所 5 26 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (114)
参考文献  (9)
节点文献
引证文献  (11)
同被引文献  (25)
二级引证文献  (33)
1910(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(4)
  • 引证文献(3)
  • 二级引证文献(1)
2016(9)
  • 引证文献(3)
  • 二级引证文献(6)
2017(7)
  • 引证文献(2)
  • 二级引证文献(5)
2018(10)
  • 引证文献(2)
  • 二级引证文献(8)
2019(11)
  • 引证文献(1)
  • 二级引证文献(10)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
智能轮椅
手势识别
人机交互
有向无环图
支持向量机
深度信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导