基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对非参数回归在短时交通流预测上的局限性,改进传统K近邻方法,加入模式识别功能(通过匹配数l实现)和变K和l搜索算法,得到最优K和l值及相应的预测结果.通过实验发现:改进的K近邻方法在误差范围为5%、9%时对应的预测准确率为84.4%、96.10%.将其与传统K近邻方法进行对比,通过计算两者预测效果的各方面指标,发现改进的K近邻方法在精度和实时性上都有了很大的提高.
推荐文章
基于聚类分析的非参数回归短时交通流预测方法
短时交通流预测
聚类分析
非参数回归
基于非参数回归的短时交通流预测研究综述
非参数回归
短时交通流
预测
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模式识别的非参数回归在短时交通流上的预测应用
来源期刊 科学技术与工程 学科 交通运输
关键词 交通工程 短时交通流预测 非参数回归 模式识别
年,卷(期) 2013,(23) 所属期刊栏目 研究简报
研究方向 页码范围 6952-6955
页数 4页 分类号 U491.112
字数 2238字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 商朋见 北京交通大学理学院数学系 15 123 5.0 10.0
2 王晶 北京交通大学理学院数学系 20 121 6.0 11.0
3 钟波 北京交通大学理学院数学系 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (90)
参考文献  (3)
节点文献
引证文献  (5)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通工程
短时交通流预测
非参数回归
模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
总被引数(次)
113906
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导