基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
结合SPSS软件的最大方差旋转的因子分析法,设计出依据较少数据进行扩充丰富的随机调和算法,改进了双输入幂激励前向神经网络.该算法有效地解决了幂激励前向神经网络在采样数据较少情况下预测精度偏低的问题,改进的双输入幂激励前向神经网络需要利用权值直接确定法和最优结构法确定最优结构,然后利用随机调和算法在有限采样数据下生成大量训练数据,随之确定最终网络的最优权值,最后在给定次数的循环下确定验证数据的预测值.数值仿真结果表明该算法具有较高的预测精度.
推荐文章
基于灰色理论和人工神经网络的瓦斯涌出量预测
灰色理论
神经网络
瓦斯涌出量
预测
基于MPSO-RBF的瓦斯涌出量预测研究
RBF神经网络
改进的PSO算法
瓦斯预测
基于径向基的瓦斯涌出量灰色预测模型
瓦斯涌出量
灰色预测
RBF
预测精度
模糊前向神经网络在瓦斯涌出量预测中的应用
模糊前向神经网络
权值直接确定
瓦斯涌出量
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 幂激励前向神经网络改进下的瓦斯涌出量预测
来源期刊 河南理工大学学报(自然科学版) 学科 工学
关键词 幂激励前向神经网络 随机调和算法 瓦斯涌出量
年,卷(期) 2014,(3) 所属期刊栏目 安全工程
研究方向 页码范围 261-265
页数 5页 分类号 TP183
字数 3626字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (116)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(5)
  • 参考文献(1)
  • 二级参考文献(4)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(13)
  • 参考文献(1)
  • 二级参考文献(12)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
幂激励前向神经网络
随机调和算法
瓦斯涌出量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南理工大学学报(自然科学版)
双月刊
1673-9787
41-1384/N
16开
河南省焦作市世纪大道2001号
3891
1981
chi
出版文献量(篇)
3451
总下载数(次)
5
总被引数(次)
20072
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导