作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
BP算法使用优化算法中的梯度下降法,梯度下降法的不足,使BP算法收敛速度慢,计算量比较大,且收敛速度与初始权的选择有关;学习时,无法保证可以得到最小值。 BP的改进算法提出权值更新的快速收敛方法,使用MatLab对改进算法进行仿真,结果表明改进算法具有高效性和有效性。
推荐文章
基于模拟退火算法改进的 BP神经网络算法
BP神经网络
样本选择
主动学习
模拟退火
基于狼群算法优化的BP神经网络
BP神经网络
狼群算法
函数拟合
基于改进BP神经网络的预测模型及其应用
神经网络
BP算法
L-M算法
非线性系统
预测
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的改进算法研究
来源期刊 现代计算机(普及版) 学科
关键词 BP算法 学习算法 权值调整
年,卷(期) 2014,(5) 所属期刊栏目 研究与开发
研究方向 页码范围 51-53
页数 3页 分类号
字数 1309字 语种 中文
DOI 10.3969/j.issn.1007-1423.2014.14.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何正风 佛山科学技术学院理学院 8 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (4)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP算法
学习算法
权值调整
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代计算机(普及版)
月刊
1007-1423
44-1415/TP
16开
广东省广州市
46-205
1985
chi
出版文献量(篇)
7135
总下载数(次)
4
总被引数(次)
3032
相关基金
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导