基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
语音存在概率的估计是语音增强的核心技术之一,针对传统的存在概率估计方法是启发式的,没有把存在概率的估计统一到一个理论框架之中,不能保证估计最优,提出了一种基于序贯隐马尔可夫模型(SHMM)的存在概率估计方法,在每一子带上构建一个SHMM模型描述对数功率谱包络的时间序列,把谱包络序列看作一个在语音和噪声状态之间转移的动态一阶马尔可夫链,采用单高斯函数构建每一状态的概率模型,语音状态的后验概率即为语音信号的存在概率.为了满足算法实时性要求,SHMM参数估计简化为一阶回归过程,根据极大似然准则逐帧更新模型参数.实验表明:SHMM所描述的时序相关性对存在概率的估计起到关键作用,它优于一般的启发式估计方法; SHMM算法的语音增强分段信噪比(SegSNR)和对数谱失真(LSD)性能优于经典的改进型最小统计量控制递归平均(IMCRA)算法.
推荐文章
基于隐马尔可夫模型的连续语音同步识别系统
隐马尔可夫模型
连续语音识别
同步识别
信号处理
人机交互
系统结构设计
基于隐马尔可夫模型和聚类的英语语音识别混合算法
英语语音识别
隐马尔科夫模型
聚类
特征数据
一种改进的隐马尔可夫模型在语音识别中的应用
隐马尔可夫模型
异步隐马尔可夫模型
语音识别
EM训练算法
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向语音增强的序贯隐马尔可夫模型时频语音存在概率估计
来源期刊 声学学报 学科
关键词
年,卷(期) 2014,(5) 所属期刊栏目
研究方向 页码范围 647-654
页数 8页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
声学学报
双月刊
0371-0025
11-2065/O4
大16开
北京市北四环西路21号
2-181
1964
chi
出版文献量(篇)
2139
总下载数(次)
5
总被引数(次)
26571
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导