基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
用转向盘转向小波能量熵的分布来衡量转向操作的不平稳性,不涉及转向具体角度,受道路线形影响小,因此理论上采用转向熵的驾驶疲劳检测方法比采用具体转向值具有更高的精度.在此之前需确定转向熵与驾驶疲劳之间的关系.模拟驾驶实验表明,转向小波能量熵与疲劳程度之间存在正相关关系.首先去除转向盘转向信号中道路线形影响,然后利用Daubechies小波对其进行分解,以200 s为信号采样长度计算转向信号沿第5尺度的小波能量熵分布,并利用平滑修正窗修正偶然因素对能量熵分布的影响,发现随着疲劳的加深,转向能量熵呈上升趋势.对实验样本分析表明,驾驶员在疲劳发展过程中能量熵变化范围为0.05~0.24:最大值在0.16~0.24之间,最小值在0.05~0.11之间.驾驶人进入深度疲劳时转向小波能量熵比刚刚出现疲劳迹象时要增长50%~60%.
推荐文章
基于Adaboost的疲劳驾驶眨眼检测
疲劳驾驶
分类器
人脸检测
眨眼检测
疲劳驾驶检测技术研究
PERCLOS
疲劳驾驶检测
Adaboost
实时性
一种疲劳驾驶检测系统中快速人眼检测方法
人眼检测
疲劳驾驶
变模板匹配
LBP
多特征分类器
基于机器视觉的疲劳驾驶检测系统
机器视觉
边缘计算
实时监测
驾驶行为分析
疲劳驾驶检测
实时显示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小波能量熵在疲劳驾驶检测中的应用
来源期刊 交通信息与安全 学科 交通运输
关键词 交通安全 能量熵 小波分析 驾驶疲劳 驾驶模拟
年,卷(期) 2014,(5) 所属期刊栏目 疲劳驾驶与交通安全
研究方向 页码范围 108-113
页数 6页 分类号 U27
字数 4868字 语种 中文
DOI 10.3963/j.issn1674-4861.2014.05.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴志周 同济大学交通运输工程学院 32 436 13.0 20.0
2 孙阳 同济大学交通运输工程学院 6 21 3.0 4.0
3 岳李圣飒 同济大学交通运输工程学院 3 16 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (12)
参考文献  (4)
节点文献
引证文献  (5)
同被引文献  (2)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通安全
能量熵
小波分析
驾驶疲劳
驾驶模拟
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通信息与安全
双月刊
1674-4861
42-1781/U
大16开
武汉市武昌和平大道1178号
38-94
1983
chi
出版文献量(篇)
3739
总下载数(次)
14
总被引数(次)
29572
论文1v1指导