基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
微博情感研究已成为网络文本分析的重要研究领域,微博情感词典是进行微博情感分类的基础。提出一种在分析海量微博语料情感的过程中,自动构建情感词典的方法。方法自动从语料中获取情感词汇、筛选确定情感新词,使用SO-MB 算法计算新情感词的情感极性及强度,构建微博情感词典,结合规则对中文微博进行无监督情感分类。实验证明提出的微博情感词典的构建方法及微博情感分类方法是有效的。
推荐文章
基于回应消息的中文微博情感分类方法
中文微博
情感分类
回应消息
支持向量机
基于极性词典的中文微博客情感分类
微博客
情感分类
词典
语言学特征
一种基于情感词典和朴素贝叶斯的中文文本情感分类方法
文本情感分类
朴素贝叶斯
情感词典
藏文情感词典的构建及微博情感计算研究
中文情感词典
藏汉情感词典
藏文情感词典
藏文微博
权值
情感分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于中文微博的情感词典构建及分类方法磁
来源期刊 计算机与数字工程 学科 工学
关键词 中文微博 微博情感词典 情感分类 情感词汇自动获取
年,卷(期) 2014,(10) 所属期刊栏目 专栏
研究方向 页码范围 1773-1776,1781
页数 5页 分类号 TP393
字数 3605字 语种 中文
DOI 10.3969/j.issn1672-9722.2014.10.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阳爱民 广东外语外贸大学思科信息学院 35 618 11.0 24.0
2 周咏梅 广东外语外贸大学思科信息学院 25 466 10.0 21.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (149)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(9)
  • 参考文献(2)
  • 二级参考文献(7)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
中文微博
微博情感词典
情感分类
情感词汇自动获取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导