作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标跟踪是计算机视觉领域中研究的热点问题.当前,基于多示例学习的目标跟踪算法引起了较多的关注.在研究多示例学习算法的基础上,针对原始的多示例学习目标跟踪算法中使用运动模型的不足,提出一种改进的基于在线学习的目标跟踪方法.该方法首先根据方向直方图局部特征(HOG特征)来描述目标,然后通过粒子滤波方法对目标位置进行预测,再用基于Boosting的在线多示例学习方法来建立描述目标的模型和分类器,最后在下一帧的图像中利用该分类器来跟踪目标,同时在线更新分类器.通过实验表明,改进的方法可以有效地提高目标跟踪精度和算法的鲁棒性.
推荐文章
基于多特征信息融合粒子滤波的红外目标跟踪
粒子滤波
纹理特征
多特征融合
目标跟踪
基于ViBe和粒子滤波的多目标汽车跟踪
ViBe算法
粒子滤波
多目标跟踪
Harris算法
鲁棒性
前景检测
基于粒子滤波的目标图像多特征融合跟踪方法
红外弱小目标
多特征融合
粒子滤波
目标跟踪
红外图像
图像识别
基于多特征融合与粒子滤波的红外弱小目标跟踪方法
红外弱小目标
多特征融合
粒子滤波
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子滤波和多示例学习的目标跟踪
来源期刊 计算机应用与软件 学科 工学
关键词 目标跟踪 计算机视觉 多示例学习 局部特征 粒子滤波
年,卷(期) 2014,(8) 所属期刊栏目 人工智能与识别
研究方向 页码范围 186-190
页数 5页 分类号 TP391
字数 4945字 语种 中文
DOI 10.3969/j.issn.1000-386x.2014.08.047
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗萱 重庆青年职业技术学院计算机科学系 12 38 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (51)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (9)
二级引证文献  (2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
目标跟踪
计算机视觉
多示例学习
局部特征
粒子滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导