基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对RoboCup(Robot World Cup)中,多Agent之间的配合策略问题,采用了一种局部合作的多Agent Q-学习方法:通过细分球场区域和Agent回报值的方法,加强了Agent之间的协作能力,从而增强了队伍的进攻和防守能力。同时通过约束此算法的使用范围,减少了学习所用的时间,确保了比赛的实时性。最后在仿真2D平台上进行的实验证明,该方法比以前的效果更好,完全符合初期的设计目标。
推荐文章
群体环境下基于随机对策的多Agent局部学习算法
多agent学习
随机对策
Nash-Q
局部学习
基于Q学习的自主Agent模型
Agent
强化学习
Q学习
BDI模型
基于改进的Q学习的RoboCup传球策略研究
RoboCup
神经网络
Q学习
智能体
传球策略
基于Q学习的Agent智能防守策略研究与应用
Q学习
智能体
机器人足球比赛
防守策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多Agent Q学习的RoboCup局部配合策略
来源期刊 计算机工程与应用 学科 工学
关键词 随机对策 Q-学习 实时性 局部合作 RoboCup仿真2D 配合策略
年,卷(期) 2014,(23) 所属期刊栏目 数据库、数据挖掘、机器学习
研究方向 页码范围 127-130
页数 4页 分类号 TP181
字数 3713字 语种 中文
DOI 10.3778/j.issn.1002-8331.1301-0093
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李龙澍 安徽大学计算机科学与技术学院 199 1780 21.0 29.0
2 赵发君 安徽大学计算机科学与技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (102)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (1)
二级引证文献  (2)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(7)
  • 参考文献(2)
  • 二级参考文献(5)
2001(4)
  • 参考文献(2)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
随机对策
Q-学习
实时性
局部合作
RoboCup仿真2D
配合策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导