基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对密集杂波环境下的多目标近距跟踪问题,提出了一种基于容积卡尔曼滤波(CKF)和特征辅助数据关联的多目标跟踪算法(FADA-CKF).通过特征信息来对传统量测进行扩维,利用扩维后的量测对关联概率进行修正,将特征信息辅助技术融入到联合概率数据关联中,再利用容积卡尔曼滤波(CKF)处理非线性观测量,对目标状态进行估计.将FADA-CKF算法用于近距多目标跟踪场景中,仿真结果表明,改进算法在跟踪精度和误跟率方面要优于传统的JPDA跟踪算法.
推荐文章
多目标跟踪中基于特征辅助的概率数据关联算法
多目标跟踪
特征辅助跟踪
广义概率数据关联
密集杂波
多目标跟踪数据关联及其改进算法
多目标跟踪
数据关联
后验概率
基于PSO-SA的多目标跟踪数据关联算法研究
数据关联
多目标跟踪
粒子群算法
模拟退火算法
一种鱼雷多目标跟踪数据关联方法
鱼雷
多目标跟踪
空间配准
时间配准
关联法则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CKF的特征辅助数据关联多目标跟踪
来源期刊 计算机仿真 学科 工学
关键词 多目标跟踪 特征辅助 数据关联 容积卡尔曼滤波 联合概率数据关联
年,卷(期) 2014,(8) 所属期刊栏目 仿真方法与算法
研究方向 页码范围 282-287,325
页数 7页 分类号 TN955
字数 4343字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨永胜 上海交通大学航空航天学院 17 65 5.0 7.0
2 向融 上海交通大学航空航天学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (14)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (16)
二级引证文献  (8)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(5)
  • 引证文献(1)
  • 二级引证文献(4)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多目标跟踪
特征辅助
数据关联
容积卡尔曼滤波
联合概率数据关联
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导