作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对贝叶斯网络结构学习方法难以兼顾高准确率和高效率的问题,提出了一种基于Markov Chain Monte Carlo(MCMC)方法的贝叶斯网络结构学习方法的改进.改进包括:使用依赖关系分析,利用统计学的方法对采样空间进行大幅缩减,能够在精确控制准确度的情况下大幅提高时间效率;结合先验知识,从理论角度将先验知识融入评分中得到完全服从后验分布的结果;搜索最优子结构,对于特定的一些结构搜索最优子结构而不是采用贪心的方法,提高了贝叶斯网络结构学习的准确率.通过理论分析可以证明时间复杂度得到了大幅的降低.并且可以在牺牲可预知的准确率的情况下,将指数时间复杂度降为线性时间.大量的数据实验表明,经改进后的方法在时间和准确性上都具有良好的表现.
推荐文章
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
基于Jaya的贝叶斯网络结构学习算法研究
贝叶斯网络
结构学习
Jaya算法
马尔科夫链
面向粒子群优化的贝叶斯网络结构学习算法
贝叶斯网络
粒子群优化
适应度函数
结构学习
符号编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 贝叶斯网络结构学习研究
来源期刊 电子设计工程 学科 工学
关键词 贝叶斯网络学习 时间效率 独立性检测 最优子结构 先验知识 Markov Chain Monte Carlo (MCMC)
年,卷(期) 2014,(17) 所属期刊栏目 计算机技术与应用
研究方向 页码范围 5-8
页数 4页 分类号 TP311
字数 4331字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 殷陶 上海交通大学计算机系 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络学习
时间效率
独立性检测
最优子结构
先验知识
Markov Chain Monte Carlo (MCMC)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子设计工程
半月刊
1674-6236
61-1477/TN
大16开
西安市高新区高新路25号瑞欣大厦10A室
52-142
1994
chi
出版文献量(篇)
14564
总下载数(次)
54
总被引数(次)
54366
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导