基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鉴于日用水量的时变性,本文提出一种基于变结构支持向量回归的动态预测模型.利用日用水量的历史数据训练支持向量机,得到模型结构参数历史数据序列,然后利用扩展卡尔曼滤波器对模型结构参数组进行估计,最后用模型结构参数估计量来更新模型结构并预测下一天日用水量.在实例分析中分别利用变结构支持向量回归模型和支持向量机预测模型对实际用水量性进行预测分析.结果表明,前者具有更好的动态跟踪能力和更高的预测精度,可应用于城市日用水量的预测.
推荐文章
城市日用水量的自回归模型(AR)预测方法
自回归模型
预测
日用水量
基于混沌理论的城市用水量预测研究
混沌
城市用水量
时间序列
神经网络
基于多尺度相关向量机的城市日用水量预测
多尺度
相关向量机
日用水量预测
小波逆变换
重庆市
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于变结构支持向量回归的城市日用水量预测
来源期刊 应用基础与工程科学学报 学科 工学
关键词 变结构 支持向量机 日用水量 动态预测
年,卷(期) 2015,(5) 所属期刊栏目
研究方向 页码范围 895-901
页数 7页 分类号 TU991.36
字数 语种 中文
DOI 10.16058/j.issn.1005-0930.2015.05.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (24)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变结构
支持向量机
日用水量
动态预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用基础与工程科学学报
双月刊
1005-0930
11-3242/TB
16开
北京大学老地学楼110室
1993
chi
出版文献量(篇)
2121
总下载数(次)
3
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导