基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了进一步提高欠定盲源分离算法中混合矩阵估计方法的性能,提出了一种基于加权最小二乘支持向量机( SVM)的欠定盲源分离混合矩阵估计方法。该方法利用信号的方向角度特征估计出有效信源信号个数,然后采用加权最小二乘支持向量机方法获得初始权值,每次将其中一个权值对应的样本点作为测试样本,其余点作为训练样本,依次对样本的误差变量进行更新,再根据权值计算公式实现所有权值的更新,进而确定最优分类平面,实现对观测信号的最优分类,最终估计出混合矩阵。实验结果表明,新算法是有效的,其平均误差是基于K-均值方法误差的0.2倍左右,是基于SVM算法平均误差的0.5倍左右。
推荐文章
负熵最小化加权最小二乘支持向量机及其应用
加权最小二乘支持向量机
负熵
稀疏权重
钴结壳识别
底质识别
基于MapReduce的最小二乘支持向量机回归模型
最小二乘支持向量机
MapReduce编程模式
局部多模型方法
加速比
可扩展性
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
基于最小二乘支持向量机的多属性决策
多属性决策
最小二乘支持向量机
效用函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于加权最小二乘支持向量机的欠定盲源分离
来源期刊 电讯技术 学科 工学
关键词 欠定盲源分离 加权最小二乘支持向量机 K-均值聚类 矩阵估计
年,卷(期) 2015,(11) 所属期刊栏目 应用基础与前沿技术
研究方向 页码范围 1200-1205
页数 6页 分类号 TN911.7
字数 4199字 语种 中文
DOI 10.3969/j.issn.1001-893x.2015.11.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵立权 东北电力大学信息工程学院 34 101 5.0 8.0
2 刘珊珊 东北电力大学信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (18)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (1)
二级引证文献  (2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(11)
  • 参考文献(1)
  • 二级参考文献(10)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
欠定盲源分离
加权最小二乘支持向量机
K-均值聚类
矩阵估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电讯技术
月刊
1001-893X
51-1267/TN
大16开
成都市营康西路85号
62-39
1958
chi
出版文献量(篇)
5911
总下载数(次)
21
总被引数(次)
28744
论文1v1指导