作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
最小二乘支持向量机是一种新的有效的机器学习算法。论文介绍了最小二乘支持向量机模型,研究了最小二乘支持向量机算法和经典的多类分类算法,提取车牌字符的奇异值特征,将奇异值系数特征作为最小二乘支持向量机的输入进行训练和分类。实验采用 LS‐SVM 工具箱,得到了较好的结果。
推荐文章
基于核的偏最小二乘特征提取的最小二乘支持向量机回归方法
偏最小二乘
最小二乘支持向量机
核的偏最小二乘
回归
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
基于最小二乘支持向量机的多属性决策
多属性决策
最小二乘支持向量机
效用函数
基于最小二乘模糊支持向量机的基因分类研究
基因微阵列
基因分类
最小二乘
隶属度函数
模糊支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的车牌字符特征分类研究
来源期刊 计算机与数字工程 学科 工学
关键词 最小二乘支持向量机 奇异值分解 车牌字符
年,卷(期) 2015,(7) 所属期刊栏目 图像处理
研究方向 页码范围 1315-1319
页数 5页 分类号 TP391
字数 4856字 语种 中文
DOI 10.3969/j.issn1672-9722.2015.07.035
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘静 渭南师范学院数学与信息科学学院 21 58 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (151)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (12)
二级引证文献  (12)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(3)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
最小二乘支持向量机
奇异值分解
车牌字符
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导