作者:
原文服务方: 计算机测量与控制       
摘要:
针对结构化道路检测中基于单一特征的检测易受影响,非结构化道路检测算法对多种类型的非标准道路缺乏适应性的问题,分别提出了一种基于D S证据理论的多视觉特征融合的车道线检测方法和一种基于增量模糊支持向量机(IFSVM)的非结构化道路在线学习检测方法;选取梯度幅度等检测算子分别设计基本概率分配函数,根据建立的分段线性道路模型进行求解,FSVM分类器通过从前先的检测结果中学习,在耗费少量计算时间与内存空间的情况下,不断再训练以增强分类器的性能;实验结果表明,该算法比单纯利用图像的边缘或颜色等特征进行道路检测具有更高的可靠性,对复杂环境下的道路检测具有较强的鲁棒性和较强的抗干扰能力.
推荐文章
车辆视觉导航系统中的实时道路检测
视觉导航
道路检测
智能车辆
道路标志重恢复
基于机器视觉的车道标志线实时检测研究
机器视觉
车道识别
智能驾驶
基于机器视觉的车道线检测研究进展综述
车道线检测
机器视觉
特征检测
模型检测
深度学习
基于计算机视觉的车道线检测与识别
计算机视觉
车道线
检测
识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于视觉的自主车道路检测技术研究
来源期刊 计算机测量与控制 学科
关键词 自主车 道路检测 信息融合 D-S证据理论 FSVM
年,卷(期) 2015,(3) 所属期刊栏目 自动化测试技术
研究方向 页码范围 734-737,740
页数 5页 分类号 TP274
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汤燕 3 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (37)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (6)
二级引证文献  (9)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
自主车
道路检测
信息融合
D-S证据理论
FSVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导