基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
标准的模糊C均值算法(FCM)采用欧式距离测度,均等地利用所有特征来计算数据间的相似性,但其存在受局部特征影响、对非球状簇识别效果不佳、无法适应高维数据等缺点.为此,提出一种将基于差异信息理论的灰关联分析结合到FCM中的新算法,利用均衡接近度描述数据间的相似性,强调从整体上判断数据的相似程度,减弱局部特征高关联性的影响,能够适应不同形状簇的识别.在人工和真实数据集上的实验表明,所提出的新算法具有更高的聚类精度和更好的稳定性.
推荐文章
基于Spark的模糊C均值算法改进
模糊C均值
Canopy算法
马哈拉诺比斯距离
Spark
并行化
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
改进的模糊核C-均值算法
聚类分析
模糊C-均值
核方法
无监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰关联分析的模糊C均值算法
来源期刊 福州大学学报(自然科学版) 学科 工学
关键词 模糊C均值算法 灰关联分析 均衡接近度 差异信息理论 灰色方法
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 170-175
页数 6页 分类号 TP391
字数 4958字 语种 中文
DOI 10.7631/issn.1000-2243.2016.02.0170
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭昆 福州大学数学与计算机科学学院 37 180 8.0 11.0
2 刘漳辉 福州大学数学与计算机科学学院 21 33 3.0 4.0
3 李莉琼 福州大学数学与计算机科学学院 2 4 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (167)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (10)
二级引证文献  (0)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊C均值算法
灰关联分析
均衡接近度
差异信息理论
灰色方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福州大学学报(自然科学版)
双月刊
1000-2243
35-1117/N
大16开
福建省福州市大学新区学园路2号
34-27
1961
chi
出版文献量(篇)
4219
总下载数(次)
6
总被引数(次)
24665
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导