基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数据融合技术是无线传感器网络的一个关键的技术,能减少传感器的传输量,从而明显提高网络的感知性能,延长网络生命周期,减少时间延迟.多传感器的数据融合可以获得比单一传感器更多,更准确的信息.针对从含有噪声的测量数据中估计出监测变量,对自适应加权融合算法进行改进,基于信任度方法对测量数据进行数据预处理,然后基于神经网络误差修正的方法实现各传感器权重的自适应匹配,从而得到较为准确的估计值.通过对比仿真实验,本文算法的融合结果在精度、容错性方面均优于均值估计算法和自适应加权融合算法;能够更好地适应当今大数据环境下对数据精确度的要求.
推荐文章
基于神经网络的多传感器融合技术研究
神经网络
多传感器融合
BP算法
自主吸尘机器人
基于神经网络组的数据融合算法
神经网络组
识别
多传感器
数据融合
机动目标跟踪的多传感器分层加权融合算法
机动目标
交互多模型
多传感器融合
分层加权
基于BP神经网络的多传感器信息融合研究
压力检测
信息融合
多传感器信息融合
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的多传感加权融合算法的研究
来源期刊 云南民族大学学报(自然科学版) 学科 工学
关键词 数据融合 方差估计 置信度
年,卷(期) 2016,(1) 所属期刊栏目 无线传感器网络技术
研究方向 页码范围 75-80
页数 6页 分类号 TN92
字数 5001字 语种 中文
DOI 12.3969/j.issn.1672-8513.2016.01.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 范菁 云南民族大学云南省高校无线传感器网络重点实验室 39 132 6.0 9.0
2 简必建 云南民族大学云南省高校无线传感器网络重点实验室 1 11 1.0 1.0
3 曲金帅 1 11 1.0 1.0
4 黄登朝 云南民族大学云南省高校无线传感器网络重点实验室 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (74)
共引文献  (21)
参考文献  (7)
节点文献
引证文献  (11)
同被引文献  (28)
二级引证文献  (4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(6)
  • 参考文献(4)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(6)
  • 引证文献(6)
  • 二级引证文献(0)
2018(5)
  • 引证文献(3)
  • 二级引证文献(2)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
数据融合
方差估计
置信度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南民族大学学报(自然科学版)
双月刊
1672-8513
53-1192/N
大16开
中国昆明市一二·一大街134号
1992
chi
出版文献量(篇)
2286
总下载数(次)
5
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导