基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深度学习人脸识别系统样本数据中存在干扰时会腐化分类边界,导致识别率下降,提出了一种改进的深度学习模型,将成对分类概念引入到深度学习中,提升人脸识别系统对于噪声、腐化、变化的鲁棒性。采用深度信念网络模型,将人脸图像送入深度学习模型中逐层训练网络,在参数微调阶段采用改进的成对BP神经网络进行参数优化,在输出层与前一隐含层之间采用成对连接。在ORL、 Extended Yale-B的实验结果表明,所提算法与传统的深度学习算法相比,构造的系统更稳定,算法识别率更高,系统在存在干扰的人脸图像中鲁棒性更强。
推荐文章
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
基于深度学习的人脸识别算法研究
家庭服务机器人
人脸识别
深度学习
Inception-ResNet-V1
基于SLPP和张量分解相结合的人脸识别
有监督的局部保留投影
张量分解
核函数
姿态流形
人脸识别
基于ICA和FLD相结合的人脸识别
主成分分析
独立成分分析
Fisher线性辨别分析
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度学习模型与成对分类相结合的人脸识别新算法
来源期刊 黑龙江大学工程学报 学科 工学
关键词 人脸识别 深度学习 深度信念网络 成对BP神经网络
年,卷(期) 2016,(3) 所属期刊栏目 电子工程与计算机科学
研究方向 页码范围 68-73
页数 6页 分类号 TP391.41
字数 3865字 语种 中文
DOI 10.13524/j.2095-008x.2016.03.044
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈永良 黑龙江大学电子工程学院 23 176 5.0 13.0
2 胡月 黑龙江大学电子工程学院 2 10 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (330)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (6)
二级引证文献  (1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸识别
深度学习
深度信念网络
成对BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
黑龙江大学工程学报
季刊
2095-008X
23-1566/T
16开
哈尔滨市学府路74号
1972
chi
出版文献量(篇)
3181
总下载数(次)
5
总被引数(次)
10495
论文1v1指导