作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前单一特征以及简单组合特征描述火灾烟雾状态的不足,以提高火灾烟雾识别准确性为目标,本文提出了一种多特征融合和相关向量机的火灾烟雾识别方法(MF-RVM)。首先获取火灾烟雾的可疑区域,并提取火灾烟雾可疑区域的静态和动态特征,然后利用主成分析法对静态和动态特征进行融合,消除特征之间冗余,最后利用相关向量机对融合特征进行训练,建立火灾烟雾识别模型。采用多个火灾烟雾视频图像在Matlab2012平台上对MF-RVM的识别性能进行仿真测试。结果表明,MF-RVM能够有效地对火灾烟雾进行识别,平均识别率达到了95%以上,并且提高火灾烟雾识别效率,以满足火灾烟雾识别的实时性要求。
推荐文章
基于融合特征与支持向量机的控制图模式识别
控制图模式识别
特征提取
原始特征
形状特征
特征融合
支持向量机
子空间域相关特征变换与融合的语音识别方法
语音识别
区分性训练
深度神经网络
子空间域相关特征变换
融合多特征的老挝机构名实体识别方法
老挝语
机构名称识别
多特征融合
前缀词提取
识别结果修正
实验结果分析
基于支持向量机的煤岩界面识别方法
煤岩界面识别
小波包分解
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多特征融合与相关向量机的火灾烟雾识别方法
来源期刊 山东农业大学学报(自然科学版) 学科 工学
关键词 火灾烟雾 运动特征 相关向量机
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 259-263
页数 5页 分类号 TP391.4
字数 3401字 语种 中文
DOI 10.3969/j.issn.1000-2324.2016.02.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡荣文 12 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (72)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(7)
  • 参考文献(4)
  • 二级参考文献(3)
2010(7)
  • 参考文献(3)
  • 二级参考文献(4)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
火灾烟雾
运动特征
相关向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东农业大学学报(自然科学版)
双月刊
1000-2324
37-1132/S
大16开
山东泰安市岱宗大街61号农业大学学报编辑部
1955
chi
出版文献量(篇)
3505
总下载数(次)
10
总被引数(次)
29464
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导