原文服务方: 西安交通大学学报       
摘要:
为了提高语音识别准确率,提出了一种子空间域相关特征变换与融合的语音识别方法(MF-CC-BN-TC方法).该方法提取语音短时谱结构特征(BN)和包络特征(MFCC)分别描述语音短时谱结构和包络信息,并采用域相关特征变换的形式分别对BN和MFCC特征进行特征变换;然后对这种变换进行泛化扩展提出子空间域相关特征变换,以采用不同的时间颗粒度(帧和语音分段)进行多层次区分性特征表达;最后,对多种区分性特征变换后的特征进行联合表征训练声学模型,并给出了区分性特征变换与融合的一般框架.实验结果表明:MFCC-BN-TC方法比采用原始BN特征方法和采用MFCC特征基线系统方法,识别性能各自提高了0.98%和1.62%;融合MFCC-BN-TC方法变换以后的语音信号特征,相比于融合原始特征,识别率提升了1.5%.
推荐文章
基于特征参数融合的语音情感识别方法
语音情感识别
模糊熵
Mel频率倒谱
参数融合
语音情感识别方法与研究
语音
情感识别
主元分析法
神经网络
混合高斯模型
基于特征层和二代曲波变换的多模生物特征融合识别方法
多模生物特征识别
曲波变换
人脸识别
掌纹识别
图像融合
基于特征融合的多节点调制识别方法
传感器网络
分布式结构
调制识别
似然比
特征融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 子空间域相关特征变换与融合的语音识别方法
来源期刊 西安交通大学学报 学科
关键词 语音识别 区分性训练 深度神经网络 子空间域相关特征变换
年,卷(期) 2016,(4) 所属期刊栏目
研究方向 页码范围 60-67
页数 8页 分类号 TN912
字数 语种 中文
DOI 10.7652/xjtuxb201604010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 屈丹 解放军信息工程大学信息系统工程学院 48 205 7.0 12.0
2 陈斌 解放军信息工程大学信息系统工程学院 11 22 3.0 4.0
3 胡平舸 山东大学信息科学与工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (11)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (27)
二级引证文献  (15)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(11)
  • 引证文献(3)
  • 二级引证文献(8)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
语音识别
区分性训练
深度神经网络
子空间域相关特征变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
论文1v1指导