作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对行人检测算法中存在特征鲁棒性差及分类器拟合非线性数据能力弱等问题,提出一种基于纹理特征和深度学习分类算法的行人检测方法.提出一种改进的GSRLBP纹理特征提取算法,提取行人图像的局部纹理特征,通过获取像素点的梯度信息结合GSRLBP算法消除微小扰动对行人特征提取的影响,进一步增强特征提取的鲁棒性.搭建基于深信度网络的深度学习行人样本分类器,利用多层受限波兹曼机搭建分类器输入端和中间层,将行人纹理特征信息逐层转化和传递,实现特征数据的自学习,利用BP神经网络搭建分类器的输出端,实现分类器结构的自优化.研究结果表明,该算法可行、有效,且性能优于经典浅层机器学习行人检测算法.
推荐文章
基于PHOG特征的行人检测算法研究
行人检测
HOG特征
PHOG特征
PHOG-PCA特征
特征金字塔
基于颜色和纹理特征的显著性检测算法
模式识别
显著性检测
颜色对比度
纹理特征
二维信息熵
基于多特征的行人检测算法
行人检测
相位一致性特征
方向梯度直方图
局部二值模式算子
基于无监督学习的行人检测算法
行人检测
无监督
稀疏编码
非线性变换
非极大值抑制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合纹理特征和深度学习的行人检测算法
来源期刊 辽宁工程技术大学学报(自然科学版) 学科 工学
关键词 行人检测 深度学习 纹理特征 受限波兹曼机 智能交通
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 206-210
页数 5页 分类号 TP391.41
字数 语种 中文
DOI 10.11956/j.issn.1008-0562.2016.02.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张阳 11 33 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (129)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(9)
  • 参考文献(4)
  • 二级参考文献(5)
2012(8)
  • 参考文献(3)
  • 二级参考文献(5)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人检测
深度学习
纹理特征
受限波兹曼机
智能交通
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁工程技术大学学报(自然科学版)
月刊
1008-0562
21-1379/N
大16开
辽宁省阜新市
1979
chi
出版文献量(篇)
6319
总下载数(次)
12
总被引数(次)
52708
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
福建省自然科学基金
英文译名:Natural Science Foundation of Fujian Province of China
官方网址:http://www.fjinfo.gov.cn/fz/zrjj.htm
项目类型:重大项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导