基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对单核聚类的性能局限性问题,提出将高斯核、Sigmoid核以及多项式核等多种核组成一种新的多核函数,并利用于模糊核进行聚类。高斯核在聚类中有广泛应用,同时Sigmoid核在神经网络中被证明具有很好的全局分类性能。将不同的核函数组合起来的多核函数将结合各种核函数的优点,其聚类性能优于利用单核的模糊核聚类(KFCM),实验结果表明了该方法的有效性。
推荐文章
多核模糊聚类算法的研究
多核函数
核聚类
模糊C-均值
特征空间
基于多核学习和AP聚类的图像摘要选取方法
图像摘要
相似度
特征融合
多核学习
AP聚类图像
基于改进模糊均值聚类算法的遥感图像聚类
模糊均值
点密度函数
遥感图像
聚类
有效性指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多核模糊聚类
来源期刊 计算机工程与应用 学科 工学
关键词 多核 模糊核聚类 高斯核 Sigmoid核 多项式核函数
年,卷(期) 2016,(2) 所属期刊栏目 大数据与云计算
研究方向 页码范围 65-69,111
页数 6页 分类号 TP391.4
字数 5040字 语种 中文
DOI 10.3778/j.issn.1002-8331.1312-0281
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴小俊 江南大学物联网工程学院 170 1079 17.0 22.0
2 高翠芳 江南大学物联网工程学院 18 91 5.0 9.0
3 戴思薇 江南大学物联网工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (69)
参考文献  (7)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(1)
  • 二级参考文献(0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多核
模糊核聚类
高斯核
Sigmoid核
多项式核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导