基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
减速器是驼峰场控制速度的主要部分,随着当前高速铁路大发展和铁路货运量的提高,编组站解体和编组能力加大,车辆减速器使用率和故障率增加,而现场维修人员凭借经验的低效率维修已经不能满足当前的货运溜放要求,对驼峰溜放控制,钩车安全连挂提出更高的要求,因此根据现场收集的数据建立BP神经网络模型进行仿真训练,精确诊断驼峰车辆减速器T·JK(Y)2,3的故障部位,仿真结果表明,故障判断准确率达到96%。
推荐文章
基于改进BP神经网络的故障诊断方法
改进BP算法
神经网络
发动机
故障诊断
基于神经网络的车辆轴承故障诊断技术
铁道车辆
轴承
故障诊断
神经网络
基于BP神经网络的电力变压器故障诊断
电力变压器
神经网络
三比值法
故障
诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进BP神经网络的驼峰场车辆减速器故障诊断的研究
来源期刊 铁道标准设计 学科 交通运输
关键词 驼峰 T?JK (Y) 车辆减速器 BP神经网络 故障诊断
年,卷(期) 2016,(12) 所属期刊栏目 通信/信号
研究方向 页码范围 135-139
页数 5页 分类号 U284.68
字数 3785字 语种 中文
DOI 10.13238/j.issn.1004-2954.2016.12.030
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李国宁 兰州交通大学自动化与电气工程学院 48 149 7.0 8.0
2 姜雪杰 兰州交通大学自动化与电气工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (10)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (25)
二级引证文献  (5)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
驼峰
T?JK (Y) 车辆减速器
BP神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
铁道标准设计
月刊
1004-2954
11-2987/U
大16开
北京市丰台区广安路15号中铁咨询大厦
82-765
1957
chi
出版文献量(篇)
9560
总下载数(次)
16
总被引数(次)
49776
论文1v1指导