基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短时交通流的准确高效预测对于智能交通系统的应用十分关键,但较强的非线性和噪声干扰使其对模型的灵活性要求较高,并且还需在尽可能短的时间内处理大量的数据。因此,讨论了用随机森林模型对短时交通流进行预测,该模型具有比单棵树更强的泛化能力,参数调节方便,计算高效,且稳定性好。观察交通流数据在较长时间跨度上的变化后,提取出主要特征变量构造输入空间,对模型进行训练后,在测试集上的预测准确率约为94%。与目前广泛使用的支持向量机模型进行对比分析,结果显示随机森林预测不仅准确率稍好于支持向量机,而且在效率、易用性及未来应用的扩展上都要优于支持向量机。
推荐文章
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
短时交通流预测方法研究
相关分析
支持向量机
交通流预测
智能交通
基于核学习方法的短时交通流量预测
核学习方法
短时交通流
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于随机森林模型的短时交通流预测方法
来源期刊 微型机与应用 学科 工学
关键词 智能交通 交通流预测 决策树 随机森林 支持向量机
年,卷(期) 2016,(10) 所属期刊栏目
研究方向 页码范围 46-49
页数 4页 分类号 TP18
字数 3441字 语种 中文
DOI 10.19358/j.issn.1674-7720.2016.09.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈贤富 中国科学技术大学信息科学技术学院 30 235 9.0 14.0
2 程政 中国科学技术大学信息科学技术学院 2 37 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (100)
参考文献  (7)
节点文献
引证文献  (20)
同被引文献  (51)
二级引证文献  (26)
1644(1)
  • 参考文献(0)
  • 二级参考文献(1)
1776(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(9)
  • 参考文献(1)
  • 二级参考文献(8)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(8)
  • 引证文献(7)
  • 二级引证文献(1)
2019(28)
  • 引证文献(7)
  • 二级引证文献(21)
2020(6)
  • 引证文献(2)
  • 二级引证文献(4)
研究主题发展历程
节点文献
智能交通
交通流预测
决策树
随机森林
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导