基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服神经网络依赖初始化结果,泛化能力不强的缺点,提出一种基于受限玻尔兹曼机(RBM)的神经网络模型.利用无监督学习方法优化神经网络的初始权值和阈值,将RBM与神经网络融合起来,模型与时间序列神经网络做实验对比,结果表明,基于受限的玻尔兹曼机的神经网络模型优于神经网络预测模型,模型可以提高预测的精准度,具有一定的应用意义.
推荐文章
基于神经网络的混沌时间序列预测
人工神经网络
混沌时间序列
Lyapunov指数
基于改进神经网络的GDP时间序列预测
BP神经网络
GDP预测
准确率
基于混沌时间序列和神经网络的网络流量预测方法
时间序列
相空间重构
神经网络
网络流量预测
基于聚类分析和神经网络的时间序列预测方法
聚类
时间序列
预测
径向基
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBM的神经网络时间序列预测
来源期刊 数学的实践与认识 学科
关键词 神经网络 时间序列 预测模型 算法
年,卷(期) 2016,(9) 所属期刊栏目 应用
研究方向 页码范围 171-178
页数 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何希平 重庆工商大学电子商务与供应链系统重庆市重点实验室 22 197 8.0 13.0
7 寇茜茜 重庆工商大学电子商务与供应链系统重庆市重点实验室 3 25 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (247)
参考文献  (9)
节点文献
引证文献  (7)
同被引文献  (10)
二级引证文献  (0)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
时间序列
预测模型
算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数学的实践与认识
半月刊
1000-0984
11-2018/O1
16开
北京大学数学科学学院
2-809
1971
chi
出版文献量(篇)
15632
总下载数(次)
52
总被引数(次)
67673
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导