基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前现有的人脸识别算法寻求最高的正确识别率,且假设所有的错误分类具有相同的错分代价,但此假设在现实的人脸识别系统中往往不成立。为此,提出一种基于代价敏感(Cost-Sensitive)主成分分析的人脸识别方法,该方法在主成分分析理论中引入一个代价敏感函数,将不同错误识别所造成的损失进行分类划分,以确定不同的损失代价,实现更精确的人脸识别。在AR、FERET和UMIST人脸数据集上的实验结果表明,与经典的基于子空间的人脸识别方法相比,提出的方法以最少的代价达到了较高的k最近邻分类识别精度。
推荐文章
基于主成分分析方法的人脸识别研究
人脸识别
主成分分析
欧几里得距离
基于特征脸的主成分分析人脸识别
人脸识别
特征脸
主成分分析
结合主成分分析和局部导数模式的人脸识别方法
人脸识别
局部导数模式
主成分分析法
相似度计算
改进的主成分分析和最近邻的人脸识别方法
人脸识别
主成分分析
奇异值分解
聚类分析
最近邻分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Cost-Sensitive主成分分析的人脸识别
来源期刊 计算机工程与应用 学科 工学
关键词 代价敏感 主成分分析 人脸识别 k最近邻
年,卷(期) 2016,(15) 所属期刊栏目 热点与综述
研究方向 页码范围 24-28
页数 5页 分类号 TP391
字数 4184字 语种 中文
DOI 10.3778/j.issn.1002-8331.1512-0376
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢晋 湖北理工学院计算机学院 17 19 2.0 3.0
2 陈延东 武汉理工大学理学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (10)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(2)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
代价敏感
主成分分析
人脸识别
k最近邻
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导