作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对直接采用MFCC作为歌曲中歌声识别的特征参数存在数据量大、且所包含的歌手歌唱特征较少的问题,提出一种基于MFCC特征聚类变换的歌曲中歌声的识别方法。通过对MFCC特征进行GMM聚类变换,以各个高斯分布的均值作为SVM分类器的特征参数,利用GMM数据描述能力强的特点,突出歌手的歌唱特征,降低特征参数的数据量。实验结果表明,该方法在歌曲中歌声识别上的平均识别率较标准GMM方法略有提高,且数据处理量减少了65.8%。
推荐文章
基于MFCC和运动强度聚类初始化的多说话人识别
多说话人识别
聚类初始化
运动强度特征
运动强度初始化
基于聚类SURF特征的商品识别算法
加速鲁棒特征
匹配角度
聚类
误剔除率
混合MFCC特征参数应用于语音情感识别
Mel频率倒谱系数(MFCC)
增减分量法
特征提取
基于改进的MFCC战场被动声目标识别
被动声目标
目标识别
美尔倒谱参数
离散小波变换
鲁棒性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MFCC特征聚类变换的歌曲中歌声的识别
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 歌曲中歌声的识别 MFCC 特征聚类变换 高斯混合模型
年,卷(期) 2016,(11) 所属期刊栏目
研究方向 页码范围 170-171
页数 2页 分类号 TP391
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕兰兰 湖南科技学院电子与信息工程学院软件工程系 18 15 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
歌曲中歌声的识别
MFCC
特征聚类变换
高斯混合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导