基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In medical imaging, Computer Aided Diagnosis (CAD) is a rapidly growing dynamic area of research. In recent years, significant attempts are made for the enhancement of computer aided diagnosis applications because errors in medical diagnostic systems can result in seriously misleading medical treatments. Machine learning is important in Computer Aided Diagnosis. After using an easy equation, objects such as organs may not be indicated accurately. So, pattern recognition fundamentally involves learning from examples. In the field of bio-medical, pattern recognition and machine learning promise the improved accuracy of perception and diagnosis of disease. They also promote the objectivity of decision-making process. For the analysis of high-dimensional and multimodal bio-medical data, machine learning offers a worthy approach for making classy and automatic algorithms. This survey paper provides the comparative analysis of different machine learning algorithms for diagnosis of different diseases such as heart disease, diabetes disease, liver disease, dengue disease and hepatitis disease. It brings attention towards the suite of machine learning algorithms and tools that are used for the analysis of diseases and decision-making process accordingly.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Windshield Survey在社区护理实践教学中的应用效果研究
社区护理
Windshield Survey
学业自我效能感
实践教学
与Graves'Disease发病机制相关的基因研究
格雷夫斯病
甲状腺
基因芯片
免疫系统
类固醇激素
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Survey of Machine Learning Algorithms for Disease Diagnostic
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 MACHINE LEARNING Artificial INTELLIGENCE MACHINE LEARNING TECHNIQUES
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 1-16
页数 16页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MACHINE
LEARNING
Artificial
INTELLIGENCE
MACHINE
LEARNING
TECHNIQUES
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导