基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对储备池的适应性问题,提出了小世界递归小波神经网络.首先基于复杂网络理论构建了具有小世界效应的稀疏储备池结构,代替原来的随机拓扑结构,为避免孤立节点的产生,该结构通过在最近邻耦合网络中随机加边来实现.其次,引入了具有良好时频局部特性的小波神经元,包括Morlet小波、Mexican hat小波、Gaussian小波和B-spline小波,并与传统的Sigmoid神经元结合,建立了储备池神经元的混合激励模式.最后,实验仿真结果表明:对比传统的小世界回声状态网络,该模型能够有效地提高对非线性系统的逼近能力.
推荐文章
基于模糊递归小波神经网络的葡萄酒品质预测
模糊递归小波神经网络
葡萄酒
品质预测
小波神经网络建模研究
小波
神经网络
基于小波神经网络辨识的PID神经MRAC研究
小波神经网络
PID神经网络
BP神经网络
模型参考自适应控制
基于小波神经网络的信号识别
信号分选与识别
小波分析
神经网络
小波神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小世界递归小波神经网络研究
来源期刊 南京邮电大学学报(自然科学版) 学科 工学
关键词 回声状态网络 小世界 小波函数 非线性系统辨识
年,卷(期) 2017,(4) 所属期刊栏目 计算机与自动控制
研究方向 页码范围 97-102
页数 6页 分类号 TP183
字数 3905字 语种 中文
DOI 10.14132/j.cnki.1673-5439.2017.04.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李莹琦 华北理工大学信息工程学院 2 3 1.0 1.0
2 孙晓川 华北理工大学信息工程学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (38)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
回声状态网络
小世界
小波函数
非线性系统辨识
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京邮电大学学报(自然科学版)
双月刊
1673-5439
32-1772/TN
大16开
南京市亚芳新城区文苑路9号
1960
chi
出版文献量(篇)
2234
总下载数(次)
13
总被引数(次)
14649
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导