作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对粒子群优化算法在迭代后期容易陷入局部最优、收敛速度变慢,精度降低、计算效率变差等缺点,提出了一种改进的粒子群优化算法.此算法通过引入惯性权重来调节粒子的速度变化,动态变化的学习因子来平衡粒子的社会学习能力和自我学习能力.通过测试函数检验,结果显示该算法能够有效摆脱局部最优,整个收敛速度明显变快,精度大幅提高.
推荐文章
一种改进的粒子群优化算法
粒子群算法
收敛速度
搜索能力
一种基于双子群的改进粒子群优化算法
收敛性
粒子群优化算法
子群
杂交机制
遗传算法
一种改进的粒子群优化算法
粒子集
优化算法
轨迹信息
惯性权重
一种改进的粒子群算法
粒子群算法
极值
惯性权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的粒子群优化算法
来源期刊 云南民族大学学报(自然科学版) 学科 工学
关键词 粒子群算法 惯性权重 学习因子
年,卷(期) 2017,(1) 所属期刊栏目 信息与计算机科学
研究方向 页码范围 60-63
页数 4页 分类号 O221|TP301
字数 1996字 语种 中文
DOI 12.3969/j.issn.1672-8513.2017.01.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 封京梅 陕西广播电视大学工程管理系 15 51 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (74)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (25)
二级引证文献  (12)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(1)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(5)
  • 引证文献(2)
  • 二级引证文献(3)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(5)
  • 引证文献(2)
  • 二级引证文献(3)
研究主题发展历程
节点文献
粒子群算法
惯性权重
学习因子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南民族大学学报(自然科学版)
双月刊
1672-8513
53-1192/N
大16开
中国昆明市一二·一大街134号
1992
chi
出版文献量(篇)
2286
总下载数(次)
5
总被引数(次)
8502
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导