基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
渐进贝叶斯方法将贝叶斯更新步骤等效为伪时间上的连续演化过程,以实现对状态的后验估计.本文基于渐进贝叶斯框架,导出一种新的高斯型非线性滤波算法.在线性高斯条件下推导了渐进贝叶斯方法的精确解;证明了对于由线性高斯解确定的动态系统,其均值和协方差矩阵满足的微分方程与常数状态估计的Kalman-Bucy滤波器是一致的.对于非线性系统,利用一阶Taylor展开推导了近似解表达式,进而导出渐进扩展卡尔曼滤波器.仿真算例表明新滤波器性能较扩展卡尔曼滤波器有大幅提高,且避免了窄形似然函数带来的滤波性能恶化问题.
推荐文章
改进粒子群算法优化扩展卡尔曼滤波器电机转速估计
转速估计
无速度传感器矢量控制
扩展卡尔曼滤波器
粒子群算法
联邦式扩展卡尔曼粒子滤波算法
信息融合
联邦滤波
粒子滤波
非高斯
非线性
基于扩展卡尔曼滤波器的RBF神经网络学习算法
扩展卡尔曼滤波器
径向基函数
神经网络
带有次优渐消因子的扩展卡尔曼滤波器
扩展卡尔曼滤波的目标跟踪优化算法
扩展卡尔曼滤波
目标跟踪
多普勒量测
跟踪精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 渐进扩展卡尔曼滤波器
来源期刊 电子学报 学科 工学
关键词 非线性滤波 渐进贝叶斯 Kalman-Bucy滤波器 扩展卡尔曼滤波器
年,卷(期) 2017,(1) 所属期刊栏目 学术论文
研究方向 页码范围 213-219
页数 7页 分类号 TP202
字数 6119字 语种 中文
DOI 10.3969/j.issn.0372-2112.2017.01.029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周穗华 海军工程大学兵器工程系 63 233 7.0 11.0
2 张宏欣 海军工程大学兵器工程系 18 55 4.0 6.0
3 冯士民 海军工程大学兵器工程系 14 35 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (2)
参考文献  (5)
节点文献
引证文献  (10)
同被引文献  (58)
二级引证文献  (9)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(6)
  • 引证文献(6)
  • 二级引证文献(0)
2019(9)
  • 引证文献(3)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
非线性滤波
渐进贝叶斯
Kalman-Bucy滤波器
扩展卡尔曼滤波器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
论文1v1指导