基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对飞行时间相机获取深度图像分辨率低,并受成像噪声干扰的问题,提出一种插值深度图和高分辨率彩色图像联合约束的二阶广义全变分(TGV)深度图超分辨率重建方法.首先利用传统插值和多尺度形态学方法进行预处理,获取插值深度图的梯度信息,然后将插值深度图和同场景高分辨率彩色图像两者的梯度信息联合,对二阶TGV模型中的正则化项加以优化:计算各项异性扩散张量时结合插值深度图的梯度信息;引入由插值深度图梯度信息决定的加权因子,控制重建过程中扩散强度.最后通过原始对偶算法完成深度图的超分辨率重建.实验结果表明,本文方法在抑制噪声的基础上,有效保护了深度边缘,可以获得较好的高分辨率深度图像.
推荐文章
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
基于深度学习的图像超分辨率重建技术的研究
人工智能
深度学习
超分辨率
制造工艺
基于深度学习的单图像超分辨率重建研究综述
单图像超分辨率重建
深度学习
密集卷积网络
生成式对抗网络
基于深度学习的辐射图像超分辨率重建方法
辐射图像
超分辨率重建
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合同场景彩色图像的深度图超分辨率重建
来源期刊 光学学报 学科 工学
关键词 图像处理 超分辨率重建 二阶广义全变分 深度图像 多尺度形态学
年,卷(期) 2017,(8) 所属期刊栏目 图像处理
研究方向 页码范围 102-108
页数 7页 分类号 TP391.4
字数 语种 中文
DOI 10.3788/AOS201737.0810002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朴燕 44 138 6.0 11.0
2 王宇 37 180 4.0 12.0
3 孙荣春 7 25 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (31)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像处理
超分辨率重建
二阶广义全变分
深度图像
多尺度形态学
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学学报
半月刊
0253-2239
31-1252/O4
大16开
上海市嘉定区清河路390号(上海800-211信箱)
4-293
1981
chi
出版文献量(篇)
11761
总下载数(次)
35
总被引数(次)
130170
论文1v1指导