基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对冠脉病变检测算法普遍存在的异常截面识别率低、无法排除特殊结构影响等问题,提出了一种基于一类支持向量机(OCSVM)的冠脉病变检测方法,并使用冠脉面重采样和基于最大互信息的特征选择方法提高了算法识别正确率.该方法首先基于梯度通量对冠脉源截面进行三次样条插值重采样,然后构造出截面的多尺度特征,接着使用最大互信息结合冗余度去除进行特征选择,最后使用特征数据训练OCSVM完成冠脉病变检测.实验结果显示,在1128个冠脉截面数据的测试结果中,本算法在完全识别异常截面的情况下对健康截面的识别正确率达到了53.,远高于同类型的仅从正面和未标记数据学习的支持向量机(SVM)算法所对应的19.6%;而冠脉截面重采样也使得30个特征数下算法对健康截面的识别正确率由21.7%提高到了53.2%.
推荐文章
一类支持向量机的设备状态自适应报警方法
一类支持向量机
自适应报警
异常状态
一种基于聚类核的半监督支持向量机分类方法
聚类核
聚类假设
半监督支持向量机
分类
基于最小二乘支持向量机的一类非自治系统自适应控制
最小二乘支持向量机
非自治系统
自适应控制
李亚普诺夫理论
基于模糊核聚类的多类支持向量机
支持向量机
多类分类
模糊核
二叉树
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于一类支持向量机的冠脉病变检测方法
来源期刊 中国激光 学科 工学
关键词 测量 冠脉病变检测 一类支持向量机 截面重采样 互信息 特征选择
年,卷(期) 2017,(5) 所属期刊栏目 测量与计量
研究方向 页码范围 162-169
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3788/CJL201744.0504006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (91)
共引文献  (854)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(1)
  • 二级参考文献(2)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(16)
  • 参考文献(0)
  • 二级参考文献(16)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(5)
  • 参考文献(2)
  • 二级参考文献(3)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
测量
冠脉病变检测
一类支持向量机
截面重采样
互信息
特征选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国激光
月刊
0258-7025
31-1339/TN
大16开
上海市嘉定区清河路390号 上海800-211邮政信箱
4-201
1974
chi
出版文献量(篇)
9993
总下载数(次)
26
总被引数(次)
105193
论文1v1指导